Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 445
Filter
1.
Molecules ; 28(11)2023 May 26.
Article in English | MEDLINE | ID: covidwho-20243101

ABSTRACT

Nowadays, due to a higher resistance to drugs, antibiotics, and antiviral medicaments, new ways of fighting pathogens are intensively studied. The alternatives for synthesized compositions are natural products, most of which have been known in natural medicine for a long time. One of the best-known and intensively investigated groups are essential oils (EOs) and their compositions. However, it is worth noting that the method of application can play a second crucial part in the effectiveness of the antimicrobial activity. EOs possess various natural compounds which exhibit antimicrobial activity. One of the compositions which is based on the five main ingredients of eucalyptus, cinnamon, clove, rosemary, and lemon is named "five thieves' oil" (Polish name: olejek pieciu zlodziei) (5TO) and is used in natural medicine. In this study, we focused on the droplet size distribution of 5TO during the nebulization process, evaluated by the microscopic droplet size analysis (MDSA) method. Furthermore, viscosity studies, as well as UV-Vis of the 5TO suspensions in medical solvents such as physiological salt and hyaluronic acid, were presented, along with measurements of refractive index, turbidity, pH, contact angle, and surface tension. Additional studies on the biological activity of 5TO solutions were made on the P. aeruginosa strain NFT3. This study opens a way for the possible use of 5TO solutions or emulsion systems for active antimicrobial applications, i.e., for surface spraying.


Subject(s)
Anti-Infective Agents , Eucalyptus , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antiviral Agents , Pseudomonas aeruginosa
2.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: covidwho-20235991

ABSTRACT

A new series of 4-((7-methoxyquinolin-4-yl) amino)-N-(substituted) benzenesulfonamide 3(a-s) was synthesized via the reaction of 4-chloro-7-methoxyquinoline 1 with various sulfa drugs. The structural elucidation was verified based on spectroscopic data analysis. All the target compounds were screened for their antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and unicellular fungi. The results revealed that compound 3l has the highest effect on most tested bacterial and unicellular fungal strains. The highest effect of compound 3l was observed against E. coli and C. albicans with MIC = 7.812 and 31.125 µg/mL, respectively. Compounds 3c and 3d showed broad-spectrum antimicrobial activity, but the activity was lower than that of 3l. The antibiofilm activity of compound 3l was measured against different pathogenic microbes isolated from the urinary tract. Compound 3l could achieve biofilm extension at its adhesion strength. After adding 10.0 µg/mL of compound 3l, the highest percentage was 94.60% for E. coli, 91.74% for P. aeruginosa, and 98.03% for C. neoformans. Moreover, in the protein leakage assay, the quantity of cellular protein discharged from E. coli was 180.25 µg/mL after treatment with 1.0 mg/mL of compound 3l, which explains the creation of holes in the cell membrane of E. coli and proves compound 3l's antibacterial and antibiofilm properties. Additionally, in silico ADME prediction analyses of compounds 3c, 3d, and 3l revealed promising results, indicating the presence of drug-like properties.


Subject(s)
Anti-Infective Agents , Urinary Tract Infections , Escherichia coli , Structure-Activity Relationship , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Sulfanilamide/pharmacology , Sulfonamides/pharmacology , Fungi , Biofilms
3.
Int J Biol Macromol ; 243: 125228, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-20234527

ABSTRACT

Melaleuca alternifolia essential oil (MaEO) is a green antimicrobial agent suitable for confection eco-friendly disinfectants to substitute conventional chemical disinfectants commonly formulated with toxic substances that cause dangerous environmental impacts. In this contribution, MaEO-in-water Pickering emulsions were successfully stabilized with cellulose nanofibrils (CNFs) by a simple mixing procedure. MaEO and the emulsions presented antimicrobial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, MaEO deactivated the SARS-CoV-2 virions immediately. FT-Raman and FTIR spectroscopies indicate that the CNF stabilizes the MaEO droplets in water by the dipole-induced-dipole interactions and hydrogen bonds. The factorial design of experiments (DoE) indicates that CNF content and mixing time have significant effects on preventing the MaEO droplets' coalescence during 30-day shelf life. The bacteria inhibition zone assays show that the most stable emulsions showed antimicrobial activity comparable to commercial disinfectant agents such as hypochlorite. The MaEO/water stabilized-CNF emulsion is a promissory natural disinfectant with antibacterial activity against these bacteria strains, including the capability to damage the spike proteins at the SARS-CoV-2 particle surface after 15 min of direct contact when the MaEO concentration is 30 % v/v.


Subject(s)
Anti-Infective Agents , COVID-19 , Disinfectants , Melaleuca , Tea Tree Oil , Cellulose/chemistry , Emulsions/chemistry , SARS-CoV-2 , Escherichia coli , Staphylococcus aureus , Anti-Infective Agents/pharmacology , Water/chemistry
4.
Microbiol Spectr ; 11(3): e0499522, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2313295

ABSTRACT

Colonization and subsequent health care-associated infection (HCAI) with Acinetobacter baumannii are a concern for vulnerable patient groups within the hospital setting. Outbreaks involving multidrug-resistant strains are associated with increased patient morbidity and mortality and poorer overall outcomes. Reliable molecular typing methods can help to trace transmission routes and manage outbreaks. In addition to methods deployed by reference laboratories, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) may assist by making initial in-house judgments on strain relatedness. However, limited studies on method reproducibility exist for this application. We applied MALDI-TOF MS typing to A. baumannii isolates associated with a nosocomial outbreak and evaluated different methods for data analysis. In addition, we compared MALDI-TOF MS with whole-genome sequencing (WGS) and Fourier transform infrared spectroscopy (FTIR) as orthogonal methods to further explore their resolution for bacterial strain typing. A related subgroup of isolates consistently clustered separately from the main outbreak group by all investigated methods. This finding, combined with epidemiological data from the outbreak, indicates that these methods identified a separate transmission event unrelated to the main outbreak. However, the MALDI-TOF MS upstream approach introduced measurement variability impacting method reproducibility and limiting its reliability as a standalone typing method. Availability of in-house typing methods with well-characterized sources of measurement uncertainty could assist with rapid and dependable confirmation (or denial) of suspected transmission events. This work highlights some of the steps to be improved before such tools can be fully integrated into routine diagnostic service workflows for strain typing. IMPORTANCE Managing the transmission of antimicrobial resistance necessitates reliable methods for tracking outbreaks. We compared the performance of MALDI-TOF MS with orthogonal approaches for strain typing, including WGS and FTIR, for Acinetobacter baumannii isolates correlated with a health care-associated infection (HCAI) event. Combined with epidemiological data, all methods investigated identified a group of isolates that were temporally and spatially linked to the outbreak, yet potentially attributed to a separate transmission event. This may have implications for guiding infection control strategies during an outbreak. However, the technical reproducibility of MALDI-TOF MS needs to be improved for it to be employed as a standalone typing method, as different stages of the experimental workflow introduced bias influencing interpretation of biomarker peak data. Availability of in-house methods for strain typing of bacteria could improve infection control practices following increased reports of outbreaks of antimicrobial-resistant organisms during the COVID-19 pandemic, related to sessional usage of personal protective equipment (PPE).


Subject(s)
Acinetobacter baumannii , Anti-Infective Agents , COVID-19 , Cross Infection , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Acinetobacter baumannii/genetics , Reproducibility of Results , Bacterial Typing Techniques/methods , Pandemics , COVID-19/epidemiology , Molecular Typing , Cross Infection/epidemiology , Cross Infection/microbiology
5.
Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med ; 31(2): 157-163, 2023 Mar.
Article in Russian | MEDLINE | ID: covidwho-2313284

ABSTRACT

In pandemic conditions, situation of active and uncontrolled use by population of antimicrobial preparations treating COVID-19 occurs. So, new risks of development of medication resistance among patients with various infectious diseases, tuberculosis included, appear. The purpose of the study is to characterize prevalence of antimicrobial preparations use by population in relationship with development of medication resistance in patients with tuberculosis during COVID-19 pandemic. Material and methods. The analysis of sales of antimicrobial medicines was implemented on the basis of published official data from the joint-stock company DSM Group presenting monthly audit of the Russian pharmaceutical market. The determination of primary antibiotic resistance was carried out in 2018-2020 on 3312 patients with tuberculosis. The modified method of proportions on liquid nutrient medium in system with automated accounting of microorganisms growth, the method of absolute concentrations and the method of polymerase chain reaction with real-time detection were applied. The results of the study. It was established that the most demanding antimicrobial medications among population were ceftriaxone, azithromycin, levofloxacin, moxifloxacin, azithromycin. At the same time, the maximum increase in sales in 2020 up to 150% as compared with of 2019 was determined in medications derived from quinolone moxifloxacin, levofloxacin, which began to be used in treatment of coronavirus infection. At the same time, these medications are traditionally used in tuberculosis treatment. But in 2020, alarming trend was established that limits treatment of tuberculosis patients. The primary resistance of mycobacteria was also established in newly diagnosed tuberculosis patients, also for the same antimicrobial medications of quinolone derivatives, and increasing in proportion of patients with primary medication resistance to levofloxacin, moxifloxacin in 2020 as compared to 2018 was 189-480%. At the same time, increasing of resistance to other antibiotics made up to 60.8% on average. Conclusion. The study results imply alarming scenario of medication resistance shifts towards very virulent and highly medication-resistant genotypes. This trend can result in conditions of successful transmission of deadly medication-resistant mutants that can seriously undermine effectiveness of implemented programs of struggle with tuberculosis worldwide.


Subject(s)
Anti-Infective Agents , COVID-19 , Mycobacterium tuberculosis , Quinolones , Tuberculosis , Humans , Levofloxacin/therapeutic use , Moxifloxacin/therapeutic use , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Fluoroquinolones/therapeutic use , Azithromycin/therapeutic use , Mycobacterium tuberculosis/genetics , Pandemics , Drug Resistance, Bacterial/genetics , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Anti-Infective Agents/therapeutic use , Quinolones/therapeutic use
6.
Front Cell Infect Microbiol ; 13: 1162721, 2023.
Article in English | MEDLINE | ID: covidwho-2312110

ABSTRACT

Background: Antimicrobial resistance is a serious threat to public health globally. It is a slower-moving pandemic than COVID-19, so we are fast running out of treatment options. Purpose: Thus, this study was designed to search for an alternative biomaterial with broad-spectrum activity for the treatment of multidrug-resistant (MDR) bacterial and fungal pathogen-related infections. Methods: We isolated Streptomyces species from soil samples and identified the most active strains with antimicrobial activity. The culture filtrates of active species were purified, and the bioactive metabolite extracts were identified by thin-layer chromatography (TLC), preparative high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS). The minimum inhibitory concentrations (MICs) of the bioactive metabolites against MDR bacteria and fungi were determined using the broth microdilution method. Results: Preliminary screening revealed that Streptomyces misakiensis and S. coeruleorubidus exhibited antimicrobial potential. The MIC50 and MIC90 of S. misakiensis antibacterial bioactive metabolite (ursolic acid methyl ester) and antifungal metabolite (tetradecamethylcycloheptasiloxane) against all tested bacteria and fungi were 0.5 µg/ml and 1 µg/mL, respectively, versus S. coeruleorubidus metabolites: thiocarbamic acid, N,N-dimethyl, S-1,3-diphenyl-2-butenyl ester against bacteria (MIC50: 2 µg/ml and MIC90: 4 µg/mL) and fungi (MIC50: 4 µg/ml and MIC90: 8 µg/mL). Ursolic acid methyl ester was active against ciprofloxacin-resistant strains of Streptococcus pyogenes, S. agalactiae, Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica serovars, colistin-resistant Aeromonas hydrophila and K. pneumoniae, and vancomycin-resistant Staphylococcus aureus. Tetradecamethylcycloheptasiloxane was active against azole- and amphotericin B-resistant Candida albicans, Cryptococcus neoformans, C. gattii, Aspergillus flavus, A. niger, and A. fumigatus. Ursolic acid methyl ester was applied in vivo for treating S. aureus septicemia and K. pneumoniae pneumonia models in mice. In the septicemia model, the ursolic acid methyl ester-treated group had a significant 4.00 and 3.98 log CFU/g decrease (P < 0.05) in liver and spleen tissue compared to the infected, untreated control group. Lung tissue in the pneumonia model showed a 2.20 log CFU/g significant decrease in the ursolic acid methyl ester-treated group in comparison to the control group. The haematological and biochemical markers in the ursolic acid methyl ester-treated group did not change in a statistically significant way. Moreover, no abnormalities were found in the histopathology of the liver, kidneys, lungs, and spleen of ursolic acid methyl ester-treated mice in comparison with the control group. Conclusion: S. misakiensis metabolite extracts are broad-spectrum antimicrobial biomaterials that can be further investigated for the potential against MDR pathogen infections. Hence, it opens up new horizons for exploring alternative drugs for current and reemerging diseases.


Subject(s)
Anti-Infective Agents , COVID-19 , Methicillin-Resistant Staphylococcus aureus , Pneumonia , Sepsis , Mice , Animals , Staphylococcus aureus , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Bacteria , Fungi , Microbial Sensitivity Tests , Pneumonia/drug therapy , Klebsiella pneumoniae , Sepsis/drug therapy
7.
Int J Clin Pharm ; 45(3): 613-621, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2317592

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (COVID-19) is a highly infectious disease that can be treated with antivirals in addition to other antimicrobials in cases of secondary or concomitant infections. This creates potential for antimicrobials misuse, which increases antimicrobial resistance (AMR). Pharmacists are known to undertake prominent roles in combatting AMR. AIM: The aim of this review was to characterize pharmacist-driven interventions that have been performed in patients with COVID-19 globally and describe their impact on antimicrobial use. METHOD: We followed the Joanna Briggs Institutes manual framework for scoping reviews in our study. Studies that reported antimicrobial stewardship (AMS) interventions performed by pharmacists in COVID-19 patients were included. Articles that did not report outcomes or did not mention pharmacists in the intervention were excluded. Restrictions included English-only articles from inception date until June 2022. Articles were searched from four databases. RESULTS: Eleven publications were included in the review. The most common AMS intervention was pharmacist-driven interventions reported in 63.2% of all studies, followed by guideline development and application (26.3%), and medication supply coordination (10.5%), respectively. The outcomes of the interventions were difficult to compare but showed a reduction in antimicrobial use and prevention of adverse drug reactions with a relatively high acceptance rate from physicians. CONCLUSION: Pharmacists played an important role in performing AMS-related interventions in COVID-19 patients and helped in the fight against the worsening of AMR during the pandemic. The impact of pharmacist-driven AMS interventions in patients with COVID-19 seemed to be positive and improved outcomes related to antimicrobial use.


Subject(s)
Anti-Infective Agents , Antimicrobial Stewardship , COVID-19 , Humans , Pharmacists , Anti-Infective Agents/adverse effects , Antiviral Agents/therapeutic use
8.
Bioorg Chem ; 138: 106600, 2023 Sep.
Article in English | MEDLINE | ID: covidwho-2314909

ABSTRACT

Guanidines are fascinating small nitrogen-rich organic compounds, which have been frequently associated with a wide range of biological activities. This is mainly due to their interesting chemical features. For these reasons, for the past decades, researchers have been synthesizing and evaluating guanidine derivatives. In fact, there are currently on the market several guanidine-bearing drugs. Given the broad panoply of pharmacological activities displayed by guanidine compounds, in this review, we chose to focus on antitumor, antibacterial, antiviral, antifungal, and antiprotozoal activities presented by several natural and synthetic guanidine derivatives, which are undergoing preclinical and clinical studies from January 2010 to January 2023. Moreover, we also present guanidine-containing drugs currently in the market for the treatment of cancer and several infectious diseases. In the preclinical and clinical setting, most of the synthesized and natural guanidine derivatives are being evaluated as antitumor and antibacterial agents. Even though DNA is the most known target of this type of compounds, their cytotoxicity also involves several other different mechanisms, such as interference with bacterial cell membranes, reactive oxygen species (ROS) formation, mitochondrial-mediated apoptosis, mediated-Rac1 inhibition, among others. As for the compounds already used as pharmacological drugs, their main application is in the treatment of different types of cancer, such as breast, lung, prostate, and leukemia. Guanidine-containing drugs are also being used for the treatment of bacterial, antiprotozoal, antiviral infections and, recently, have been proposed for the treatment of COVID-19. To conclude, the guanidine group is a privileged scaffold in drug design. Its remarkable cytotoxic activities, especially in the field of oncology, still make it suitable for a deeper investigation to afford more efficient and target-specific drugs.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , COVID-19 , Neoplasms , Male , Humans , Guanidine/pharmacology , Guanidine/chemistry , Guanidines/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Anti-Bacterial Agents/pharmacology , Neoplasms/drug therapy , Antihypertensive Agents , Antiviral Agents/pharmacology
9.
Zoonoses Public Health ; 70(5): 393-402, 2023 08.
Article in English | MEDLINE | ID: covidwho-2297270

ABSTRACT

Antimicrobial resistance (AMR) in bacterial pathogens reduces the effectiveness of these drugs in both human and veterinary medicine, making judicious antimicrobial use (AMU) an important strategy for its control. The COVID-19 pandemic modified operations in both human and veterinary healthcare delivery, potentially impacting AMU. The goal of this research is to quantify how antimicrobial drug prescribing practices for companion animals in an academic veterinary hospital changed during the pandemic. A retrospective study was performed using prescribing data for dogs and cats collected from the NC State College of Veterinary Medicine (NCSU-CVM) pharmacy, which included prescriptions from both the specialty referral hospital and primary care services. Records (n = 31,769) for 34 antimicrobial drugs from 2019-2020-before and during the pandemic-related measures at the NCSU-CVM-were compared. The prescribed antimicrobials' importance was categorized using the FDA's Guidance for Industry (GFI #152), classifying drugs according to medical importance in humans. A proportional odds model was used to estimate the probability of more important antimicrobials being administered in patients seen during the pandemic versus before (i.e., critically important vs. highly important vs. important). Rates of AMU per week and per patient visit were also compared. During the pandemic, cumulative antimicrobials prescribed per week were significantly decreased in most services for dogs. Weekly rates for Highly Important antimicrobials were also significantly lower in dogs. For important and critically important antimicrobials, rates per week were significantly decreased in various services overall. Rates of antimicrobial administration per patient visit were significantly increased for Highly Important drugs. Patients in the internal medicine, dermatology, and surgery services received significantly more important antimicrobials during the pandemic than before, while cardiology patients received significantly less. These results suggest that the pandemic significantly impacted prescribing practices of antimicrobials for companion animals in this study.


Subject(s)
Anti-Infective Agents , COVID-19 , Cat Diseases , Dog Diseases , Humans , Cats , Animals , Dogs , Pets , Pandemics , Retrospective Studies , Hospitals, Animal , North Carolina , Dog Diseases/drug therapy , Dog Diseases/epidemiology , COVID-19/veterinary , Anti-Infective Agents/therapeutic use , Anti-Bacterial Agents/therapeutic use
10.
J Law Med Ethics ; 50(S2): 17-25, 2022.
Article in English | MEDLINE | ID: covidwho-2305613

ABSTRACT

To address the complex challenge of global antimicrobial resistance (AMR), a pandemic treaty should include mechanisms that 1) equitably address the access gap for antimicrobials, diagnostic technologies, and alternative therapies; 2) equitably conserve antimicrobials to sustain effectiveness and access across time and space; 3) equitably finance the investment, discovery, development, and distribution of new technologies; and 4) equitably finance and establish greater upstream and midstream infection prevention measures globally. Biodiversity, climate, and nuclear governance offer lessons for addressing these challenges.


Subject(s)
Anti-Infective Agents , Pandemics , Humans , Pandemics/prevention & control , Anti-Infective Agents/therapeutic use , International Cooperation
11.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2304189

ABSTRACT

The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) infections is one of the most crucial challenges currently faced by the scientific community. Developments in the fundamental understanding of their underlying mechanisms may open new perspectives in drug discovery. In this review, we conducted a systematic literature search in PubMed, Web of Science, and Scopus, to collect information on innovative strategies to hinder iron acquisition in bacteria. In detail, we discussed the most interesting targets from iron uptake and metabolism pathways, and examined the main chemical entities that exhibit anti-infective activities by interfering with their function. The mechanism of action of each drug candidate was also reviewed, together with its pharmacodynamic, pharmacokinetic, and toxicological properties. The comprehensive knowledge of such an impactful area of research will hopefully reflect in the discovery of newer antibiotics able to effectively tackle the antimicrobial resistance issue.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Bacteria , Drug Discovery , Iron
13.
Biomater Adv ; 150: 213440, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2303511

ABSTRACT

In recent years, graphene and its derivatives, owing to their phenomenal surface, and mechanical, electrical, and chemical properties, have emerged as advantageous materials, especially in terms of their potential for antimicrobial applications. Particularly important among graphene's derivatives is graphene oxide (GO) due to the ease with which its surface can be modified, as well as the oxidative and membrane stress that it exerts on microbes. This review encapsulates all aspects regarding the functionalization of graphene-based materials (GBMs) into composites that are highly potent against bacterial, viral, and fungal activities. Governing factors, such as lateral size (LS), number of graphene layers, solvent and GBMs' concentration, microbial shape and size, aggregation ability of GBMs, and especially the mechanisms of interaction between composites and microbes are discussed in detail. The current and potential applications of these antimicrobial materials, especially in dentistry, osseointegration, and food packaging, have been described. This knowledge can further drive research that aims to look for the most suitable components for antimicrobial composites. The need for antimicrobial materials has seldom been more felt than during the COVID-19 pandemic, which has also been highlighted here. Possible future research areas include the exploration of GBMs' ability against algae.


Subject(s)
Anti-Infective Agents , COVID-19 , Graphite , Humans , Graphite/pharmacology , Graphite/chemistry , Pandemics , Anti-Infective Agents/pharmacology
14.
ACS Appl Bio Mater ; 6(5): 1981-1991, 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2296132

ABSTRACT

Numerous disinfection methods have been developed to reduce the transmission of infectious diseases that threaten human health. However, it still remains elusively challenging to develop eco-friendly and cost-effective methods that deactivate a wide range of pathogens, from viruses to bacteria and fungi, without doing any harm to humans or the environment. Herein we report a natural spraying protocol, based on a water-dispersible supramolecular sol of nature-derived tannic acid (TA) and Fe3+, which is easy-to-use and low-cost. Our formulation effectively deactivates viruses (influenza A viruses, SARS-CoV-2, and human rhinovirus) as well as suppressing the growth and spread of pathogenic bacteria (Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Acinetobacter baumannii) and fungi (Pleurotus ostreatus and Trichophyton rubrum). Its versatile applicability in a real-life setting is also demonstrated against microorganisms present on the surfaces of common household items (e.g., air filter membranes, disposable face masks, kitchen sinks, mobile phones, refrigerators, and toilet seats).


Subject(s)
Anti-Infective Agents , COVID-19 , Viruses , Humans , Polyphenols/pharmacology , SARS-CoV-2 , COVID-19/prevention & control , Anti-Infective Agents/pharmacology , Disinfection/methods , Bacteria , Escherichia coli , Fungi
15.
BMC Health Serv Res ; 23(1): 283, 2023 Mar 25.
Article in English | MEDLINE | ID: covidwho-2306543

ABSTRACT

INTRODUCTION: The results of laboratory testing are crucial basis for clinicians to prescribe antimicrobial. Laboratory testing is a highly complex process, and increasing evidence suggests that errors and obstacles in the pre-analytical process (PP) will affect reasonable antimicrobial use. However, PP was an easily neglected link in hospital infection management and the current situation of it and the influencing factors of management are not clear. METHODS: A cross-sectional survey was conducted in the department of clinical, specimen collection, transportation, and inspection in 109 secondary and tertiary hospitals in Central China. The rate of antimicrobial susceptibility test request (AST) and related indexes of above departments were calculated to describe the situation. Management characteristics (frequency of training etc.) were described as proportions and fractional probit regression analysis was used to determine the influencing factors. RESULTS: The average rate of non restricted-use antimicrobial was 63%, the restricted-use was 86%, the special-use was 95%. The zero obstacle rate of specimen collection was 27.3%, of specimen transportation was 19.4% and of inspection feedback was 61.7%. There was a difference between the secondary and tertiary hospitals on non restricted-use (X2 = 22.968, P < 0.001); restricted-use (X2 = 29.466, P < 0.001); special-use (X2 = 27.317, P < 0.001). Taking non restricted-use as an example, training (OR = 0.312, 95%CI: 0.148,0.429), low-frequency appraisal (OR = 0.153, 95%CI: 0.082,0.224), guidance (OR = 0.32, 95%CI: 0.237,0.403) and information technology (OR = 0.104, 95%CI: 0.009,0.199) were positive factors. CONCLUSIONS: There were substantial differences in the rate of AST request in clinical department between secondary and tertiary hospitals. The zero obstacle rate in collection, transportation and inspection department were still low. In most departments, training and performance appraisal were positive factors, guidance and information technology were positive supporting factors.


Subject(s)
Anti-Infective Agents , Developing Countries , Humans , Cross-Sectional Studies , Specimen Handling , Tertiary Care Centers , Anti-Infective Agents/therapeutic use
16.
J Appl Microbiol ; 132(4): 3375-3386, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-2296177

ABSTRACT

AIMS: This study evaluated the residual efficacy of commercially available antimicrobial coatings or films against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on non-porous surfaces. METHODS AND RESULTS: Products were applied to stainless steel or ABS plastic coupons and dried overnight. Coupons were inoculated with SARS-CoV-2 in the presence of 5% soil load. Recovered infectious SARS-CoV-2 was quantified by TCID50 assay. Tested product efficacies ranged from <1.0 to >3.0 log10 reduction at a 2-h contact time. The log10 reduction in recovered infectious SARS-CoV-2 ranged from 0.44 to 3 log10 reduction on stainless steel and 0.25 to >1.67 log10 on ABS plastic. The most effective products tested contained varying concentrations (0.5%-1.3%) of the same active ingredient: 3-(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride. Products formulated with other quaternary ammonium compounds were less effective against SARS-CoV-2 in this test. CONCLUSIONS: The residual antimicrobial products tested showed varied effectiveness against SARS-CoV-2 as a function of product tested. Several products were identified as efficacious against SARS-CoV-2 on both stainless steel and ABS plastic surfaces under the conditions evaluated. Differences in observed efficacy may be due to variation in active ingredient formulation; efficacy is, therefore, difficult to predict based upon listed active ingredient and its concentration. SIGNIFICANCE AND IMPACT: This study highlights the formulation-specific efficacy of several products against SARS-CoV-2 and may inform future development of residual antiviral products for use on non-porous surfaces. The identification of antimicrobial coatings or films showing promise to inactivate SARS-CoV-2 suggests that these products may be worth future testing and consideration.


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Humans , SARS-CoV-2
17.
Molecules ; 28(6)2023 Mar 20.
Article in English | MEDLINE | ID: covidwho-2288838

ABSTRACT

Herein, we describe a one-step method for synthesizing cationic acrylate-based core-shell latex (CACS latex), which is used to prepare architectural coatings with excellent antimicrobial properties. Firstly, a polymerizable water-soluble quaternary ammonium salt (QAS-BN) was synthesized using 2-(Dimethylamine) ethyl methacrylate (DMAEMA) and benzyl bromide by the Hoffman alkylation reaction. Then QAS-BN, butyl acrylate (BA), methyl methacrylate (MMA), and vinyltriethoxysilane (VTES) as reactants and 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AIBA) as a water-soluble initiator were used to synthesize the CACS latex. The effect of the QAS-BN dosage on the properties of the emulsion and latex film was systematically investigated. The TGA results showed that using QAS-BN reduced the latex film's initial degradation temperature but improved its thermal stability. In the transmission electron microscopy (TEM) photographs, the self-stratification of latex particles with a high dosage of QAS-BN was observed, forming a core-shell structure of latex particles. The DSC, TGA, XPS, SEM, and performance tests confirmed the core-shell structure of the latex particles. The relationship between the formation of the core-shell structure and the content of QAS-BN was proved. The formation of the core-shell structure was due to the preferential reaction of water-soluble monomers in the aqueous phase, which led to the aggregation of hydrophilic groups, resulting in the formation of soft-core and hard-shell latex particles. However, the water resistance of the films formed by CACS latex was greatly reduced. We introduced a p-chloromethyl styrene and n-hexane diamine (p-CMS/EDA) crosslinking system, effectively improving the water resistance in this study. Finally, the antimicrobial coating was prepared with a CACS emulsion of 7 wt.% QAS-BN and 2 wt.% p-CMS/EDA. The antibacterial activity rates of this antimicrobial coating against E. coli and S. aureus were 99.99%. The antiviral activity rates against H3N2, HCoV-229E, and EV71 were 99.4%, 99.2%, and 97.9%, respectively. This study provides a novel idea for the morphological design of latex particles. A new architectural coating with broad-spectrum antimicrobial properties was obtained, which has important public health and safety applications.


Subject(s)
Anti-Infective Agents , Escherichia coli , Emulsions/chemistry , Staphylococcus aureus , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Methacrylates/pharmacology , Water/chemistry
18.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2262037

ABSTRACT

Frequently touched surfaces (FTS) that are contaminated with pathogens are one of the main sources of nosocomial infections, which commonly include hospital-acquired and healthcare-associated infections (HAIs). HAIs are considered the most common adverse event that has a significant burden on the public's health worldwide currently. The persistence of pathogens on contaminated surfaces and the transmission of multi-drug resistant (MDR) pathogens by way of healthcare surfaces, which are frequently touched by healthcare workers, visitors, and patients increase the risk of acquiring infectious agents in hospital environments. Moreover, not only in hospitals but also in high-traffic public places, FTS play a major role in the spreading of pathogens. Consequently, attention has been devoted to developing novel and alternative methods to tackle this problem. This study planned to produce and characterize innovative functionalized enameled coated surfaces supplemented with 1% AgNO3 and 2% AgNO3. Thus, the antimicrobial properties of the enamels against relevant nosocomial pathogens including the Gram-positive Staphylococcus aureus and the Gram-negative Escherichia coli and the yeast Candida albicans were assessed using the ISO:22196:2011 norm.


Subject(s)
Anti-Infective Agents , Cross Infection , Humans , Antifungal Agents/pharmacology , Silver/pharmacology , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Cross Infection/prevention & control , Cross Infection/microbiology , Microbial Sensitivity Tests
19.
Front Cell Infect Microbiol ; 13: 1110652, 2023.
Article in English | MEDLINE | ID: covidwho-2261575

ABSTRACT

Objective: This study aims to analyze the serotype distribution and drug resistance of Streptococcus pneumoniae isolated from children aged 8 days to 7 years in Urumqi, China, between 2014 to 2021, during which PCV13 was introduced in the private sector's immunization program and COVID-19 control was administrated in the last 2 years. Methods: Serotypes of S. pneumoniae isolates were determined by Quellung reaction, and their susceptibility against 14 antimicrobials were tested. According to the start year of PCV13 administration (2017) and COVID-19 control (2020), the study period was divided into three stages: 2014-2015, 2018-2019, and 2020-2021. Results: A total of 317 isolates were involved in this study. The most common serotypes were type 19F (34.4%), followed by 19A (15.8%), 23F (11.7%), 6B (11.4%), and 6A(5.0%). The coverage rate of both PCV13 and PCV15 was 83.0%. The coverage of PCV20 was a little higher at 85.2%. The resistance rate against penicillin was 28.6% according to the breakpoints of oral penicillin, which would reach up to 91.8% based on the breakpoints of parenteral penicillin for meningitis. The resistance rates to erythromycin, clindamycin, tetracycline, and sulfamethoxazole-trimethoprim were 95.9%, 90.2%, 88.9%, and 78.8%, respectively. The PCV13 isolate was more resistant to penicillin than the non-PCV13 ones. There was not any significant change found in the serotype distribution since the PCV13 introduction and the COVID-19 control. The resistance rate against oral penicillin slightly elevated to 34.5% in 2018-2019 from 30.7% in 2014-2015 and then decreased significantly to 18.1% in 2020-2021 (χ 2 = 7.716, P < 0.05), while the resistance rate to ceftriaxone (non-meningitis) continuously declined from 16.0% in 2014-2015 to 1.4% in 2018-2019 and 0% in 2020-2021 (Fisher = 24.463, P < 0.01). Conclusion: The common serotypes of S. pneumoniae isolated from children in Urumqi were types 19F, 19A, 23F, 6B, and 6A, which we found to have no marked change since the PCV13 introduction and the COVID-19 control However, the resistance rate to oral penicillin and ceftriaxone significantly declined in the COVID-19 control stage.


Subject(s)
Anti-Infective Agents , COVID-19 , Pneumococcal Infections , Child , Humans , Infant , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Serogroup , Ceftriaxone , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Drug Resistance, Bacterial , COVID-19/epidemiology , Penicillins , China/epidemiology , Pneumococcal Vaccines , Serotyping
20.
Xenobiotica ; 53(1): 12-24, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2261260

ABSTRACT

Plasma protein binding (PPB) studies on the SARS-CoV-2 main protease inhibitor nirmatrelvir revealed considerable species differences primarily in dog and rabbit, which prompted further investigations into the biochemical basis for these differences.The unbound fraction (fu) of nirmatrelvir in dog and rabbit plasma was concentration (2-200 µM)-dependent (dog fu,p 0.024-0.69, rabbit fu,p 0.010-0.82). Concentration (0.1-100 µM)-dependent binding in serum albumin (SA) (fu,SA 0.040-0.82) and alpha-1-acid glycoprotein (AAG) (fu,AAG 0.050-0.64) was observed in dogs. Nirmatrelvir showed minimal binding to rabbit SA (1-100 µM: fu,SA 0.70-0.79), while binding to rabbit AAG was concentration-dependent (0.1-100 µM: fu,AAG 0.024-0.66). In contrast, nirmatrelvir (2 µM) revealed minimal binding (fu,AAG 0.79-0.88) to AAG from rat and monkeys. Nirmatrelvir showed minimal-to-moderate binding to SA (1-100 µM; fu,SA 0.70-1.0) and AAG (0.1-100 µM; fu,AAG 0.48-0.58) from humans across tested concentrations.Nirmatrelvir molecular docking studies using published crystal structures and homology models of human and preclinical species SA and AAG were used to rationalise the species differences to plasma proteins. This suggested that species differences in PPB are primarily driven by molecular differences in albumin and AAG resulting in differences in binding affinity.


Subject(s)
Anti-Infective Agents , COVID-19 , Rats , Humans , Animals , Dogs , Rabbits , Protein Binding , SARS-CoV-2/metabolism , Protease Inhibitors , Species Specificity , Molecular Docking Simulation , Blood Proteins/metabolism , Serum Albumin/metabolism , Orosomucoid/metabolism , Antiviral Agents , Enzyme Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL